9-(Organothio)-9-borabicyclo[3.3.1]nonane – Herstellung und Charakterisierung¹⁾

Roland Köster**, Günter Seidel* und Roland Boeseb

Max-Planck-Institut für Kohlenforschung^a, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim an der Ruhr

Institut für Anorganische Chemie der Universität Essen^b, Universitätsstraße 5-7, D-4300 Essen

Eingegangen am 14. Dezember 1987

Die 9-RS-9-BBN-Verbindungen [R = CH₃ (1a), C₂H₅ (1b), CH(CH₃)₂ (1c), C(CH₃)₃ (1d), C₆H₅ (1e), $-CH_2CH_2 - (1f)$] werden aus 9-Cl-9-BBN mit LiSR (1a, b, d, e) oder aus (9-BBN)₂ mit HSR (1c, f) hergestellt. Sämtliche 9-RS-9-BBN-Verbindungen sind in Lösung bei Raumtemperatur monomer (¹¹B-NMR). Die α-C- und β-C-Resonanzen des C₃H₁₄B-Bicyclus sind in den ¹³C-NMR-Spektren von 1a - c und f bei bzw. unterhalb Raumtemperatur in jeweils zwei Sätze aufgespalten (behinderte Rotation um die BS-Bindung). Vom festen Dimeren (1a)₂ liegt eine Röntgenstrukturanalyse vor. Die gemischten Dimeren 1a-9-BBN und 1b-9-BBN bilden sich in Lösung aus 1a bzw. 1b mit (9-BBN)₂ (MS, ¹¹B-NMR-Spektren). (1a)₂ reagiert mit AlCl₃, Pyridin oder Trimethylphosphan unter Bildung der kristallisierten 1:1-Additionsverbindungen 1a-AlCl₃, Py-1a bzw. TMP-1a.

Bei Untersuchungen über die Chemie von 9-Borabicyclo[3.3.1]nonan-Verbindungen¹⁻⁴⁾ interessieren wir uns auch für Herstellungsmethoden, Eigenschaften und Anwendungsmöglichkeiten der 9-(Organothio)-9-borabicyclo-[3.3.1]nonane (9-RS-9-BBN). Von diesen Verbindungen war bisher nur 9-(Methylthio)-9-BBN (**1a**) aus 9-Brom-9-BBN mit Pb(SCH₃)₂ hergestellt worden⁵⁾.

Außer aus den Halogen-organoboranen⁶⁾ gewinnt man Diorgano(organothio)borane R_2BSR' auch aus Trialkylboranen⁷⁾ oder Organodiboranen(6)⁸⁾. Auf 9-BBN-Verbindungen sind diese Methoden noch nicht angewandt worden.

9-(Methylthio)-9-borabicyclo[3.3.1]nonan (1a) haben wir aus 9-Chlor-9-BBN mit Lithiummethylsulfid in Toluol nach Gl. (a) quantitativ hergestellt. Reines farbloses 1a ist in Toluol bei Raumtemperatur monomer, liegt aber nach Abkühlen auf -20 °C in Lösung aufgrund des ¹¹B-NMR-Signals (8 ppm) teilweise dimer vor. Festes 1a ist über μ -Methylthiobrücken assoziiert und liegt als (1a)₂ dimer vor; vgl. hierzu die Molekülstruktur in Abb. 1.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} T_{01} uol \\ -LiCl \end{array} \end{array} \end{array} \xrightarrow{T_{01} uol } B-SR \quad (a) \\ \\ \begin{array}{c} \begin{array}{c} R \\ \hline \\ 1a \end{array} \xrightarrow{T_{01} Uol } 1d \end{array} \xrightarrow{T_{01} Uol } B-SR \end{array}$$

9-(Ethylthio)-9-BBN (1b) läßt sich aus 9-Chlor-9-BBN mit Lithiumethylsulfid in Toluol mit hoher Ausbeute gewinnen

9-(Organothio)-9-borabicyclo[3.3.1]nouanes -Preparation and Characterization¹⁾

The 9-RS-9-BBN compounds $[R = CH_3$ (1a), C_2H_5 (1b), CH(CH₃)₂ (1c), C(CH₃)₃ (1d), C_6H_5 (1e), $-CH_2CH_2-$ (1f)] are prepared from 9-Cl-9-BBN with LiSR (1a, b, d, e) or from (9-BBN)₂ with HSR (1c, f). All 9-RS-9-BBN compounds are monomeric in solution at room temperature (¹¹B NMR). At or below room temperature two sets of signals for the α -C- and β -C atoms of the $C_8H_{14}B$ bicyclic ring are observed in the ¹³C-NMR spectra of 1a – c and f (hindered rotation around the BS bond). (1a)₂ is a dimer in the solid state (X-ray analysis). The mixed dimers 1a-9-BBN and 1b-9-BBN are formed in solution from 1a or 1b with (9-BBN)₂ (MS, ¹¹B NMR). (1a)₂ reacts with AlCl₃, pyridine, or trimethylphosphane to form the crytalline 1:1-addition compounds 1a-AlCl₃, Py-Ia, and TMP-1a, respectively.

[vgl. Gl. (a)]. Es ist bei Raumtemperatur in Lösung wie 1a monomer (¹¹B-NMR). 1b läßt sich in fester Form mit Schmp. 64-66 °C isolieren und ist vermutlich wie (1a)₂ als (1b)₂ assoziiert.

Das in Lösung monomere 9-(Isopropylthio)-9-BBN (1c) erhält man aus $(9\text{-BBN})_2$ mit 2-Propanthiol in Toluol bei ca. 60° C unter H₂-Abspaltung nach Gl. (b₁) mit guter Ausbeute. Eine DSC-Messung ergibt, daß das bei Raumtemperatur flüssige 1c nach Abkühlen auf ca. -140°C beim langsamen Erwärmen bei ca. -67°C Wärme abgibt (Dimerisierung?) und dann bei ca. -22°C praktisch die gleiche Wärmemenge wieder aufnimmt (Dissoziation?).

Monomeres 9-(*tert*-Butylthio)-9-BBN (1d) läßt sich aus 9-Chlor-9-BBN mit Lithium-*tert*-butylsulfid in Toluol mit guter Ausbeute nach Gl. (a) herstellen. Das bei Raumtemperatur flüssige 1d dimerisiert beim Abkühlen und Wiedererwärmen nicht (DSC-Messung). Beim mehrstündigen Erhitzen von (9-BBN)₂ und 1,1-Dimethylethanthiol in Toluol auf ca. 70°C wird kein Wasserstoff abgespalten. 1d ist daher nach Gl. (b_1) nicht zugänglich.

Demgegenüber konnten wir das feste 1,2-Bis(1,5-cyclooctandiylborylthio)ethan (1f) aus (9-BBN)₂ und 1,2-Ethandithiol in Toluol nach kurzem Erwärmen auf maximal 50 °C unter Wasserstoff-Entwicklung mit 92% Ausbeute nach Gl. (b₂) gewinnen. In Toluol gelöstes 1f ist aufgrund des ¹¹B-NMR-Spektrums (vgl. Tab. 2) wie die Verbindungen 1a-cauch intramolekular nicht assoziiert.

Reines 9-(Phenylthio)-9-BBN (1e) erhält man in Benzol nach Gl. (a) aus 9-Chlor-9-BBN mit Lithiumphenylsulfid mit 92% Ausbeute. Das i. Vak. unzersetzt destillierbare 1e ist bei Raumtemperatur flüssig und assoziiert aufgrund der DSC-Messung beim Abkühlen nicht.

Vermischt man in Toluol 2 mol 1a (δ^{11} B: 74.5) und 1 mol (9-BBN)₂ (δ^{11} B: 27), so erhält man nach kurzem Erwärmen eine Lösung, in der ein zusätzliches ¹¹B-NMR-Signal bei ca. 2 ppm auftritt. Wir ordnen das relativ stark abgeschirmte Bor-Atom im Verein mit dem Massenspektrum des Gemischs (vgl. Tab. 1) dem Mischdimer 1a-9-BBN mit 4fach koordinierten Bor-Atomen zu. Im Gegensatz zu den stabileren, Struktur-identifizierten Mischdimeren aus 9-BBN-Molekül und 9-(Acyloxy)-9-BBN⁹ bzw. 9-Amino-9-BBN-Verbindungen^{2,10} steht das nach Gl. (c) gebildete 1a-9-BBN in Toluol bei Raumtemperatur im Gleichgewicht mit 1a und (9-BBN)₂.

Das in Toluol gelöste äquimolare Gemisch aus festem $(1b)_2$ und $(9\text{-BBN})_2$ reagiert wie das $(1a)_2/(9\text{-BBN})_2$ -Gemisch. ¹¹B-NMR-spektroskopisch läßt sich in Toluol ein Gemisch aus 1b, $(9\text{-BBN})_2$ und dem Mischdimer 1b-9-BBN (MS) nachweisen (vgl. Tab. 1, 2).

Der Anteil an 1a-9-BBN bzw. 1b-9-BBN nimmt mit Vergrößerung des Alkyl-Rests im Gleichgewicht mit 1a bzw. b und (9-BBN)₂ deutlich ab. Äquimolare Mengen (1a)₂ bzw. (1b)₂ und (9-BBN)₂ liefern bei Raumtemperatur in Toluol ca. 70% 1a-BBN, jedoch nur ca. 40% 1b-9-BBN. Die Verbindungen 1c - e bilden mit dem 9-BBN-Molekül keine massenspektrometrisch oder ¹¹B-NMR-spektroskopisch nachweisbaren Mischassoziate.

1a reagiert in Toluol mit Aluminiumtrichlorid unter Bildung der festen 1:1-Additionsverbindung 1a-AlCl₃. Mit Pyridin (Py) oder Trimethylphosphan (TMP) erhält man in Toluol die ebenfalls kristallisierten Verbindungen Py-1a bzw. TMP-1a.

Die Verbindungen 1a - f eignen sich zur Übertragung von Organothio-Gruppen auf Carbonyl- und Acetal-Verbindungen. Unter milden Bedingungen erhält man S-Acetale. Über Reaktionen von 1a - f mit Benzaldehyd, Benzophenon, 2-Cyclohexenon, Cyclohexenepoxid, 1,3-Dioxan u.a. werden wir später berichten.

Massenspektren und NMR-Daten

In Tab. 1 findet man Auszüge aus den Massenspektren der 9-(Organothio)-9-BBN-Verbindungen.

Tab. 1. Auszüge aus den Massenspektren der Verbindungen (1a)₂-1f

Verbindung		Gef. m/z (% rcl. Intensität)				
Nr.	Molmasse	M ⁺ Basispeak		Weitere charakteristische Bruchstückmassen		
(<u>1a</u>) ₂	168.1 (Monomer)	168 (65)	41	153 (5), 140 (9), 126 (33), 120 (67), 91 (59), 67 (64)		
(<u>1</u> b) ²	182.1 (Monomer)	182	182	153 (28), 140 (28), 120 (62), 41 (28)		
<u>1c</u>	196.2	196 (18)	43	153 (31), 120 (23), 67 (31), 41 (87)		
<u>1d</u>	210.2	210 (>1)	57	178 (>1), 154 (8), 41 (34)		
<u>le</u>	230.2	230 (65)	108	121 (23), 120 (23), 110 (49), 93 (24), 77 (41)		
<u>1f</u>	334.2	334 (65)	121	223 (19), 214 (19), 93 (66), 79 (46), 57 (38), 41 (45)		
<u>1a</u> -9-BBN	290	290 (1)	n.b.	n.b.		
		im Gemisch mit <u>1a</u> (168) und (9-BBN) ₂ (244)				
<u>16</u> -9-BBN	304	im Gemisch mit <u>1b</u> (182) und (9-BBN) ₂ (244)				

Die Verbindungen 1a-f haben jeweils einen M⁺-Peak mit hoher (1a, b, e, f) bzw. niedriger (1c, d) Intensität. Bei 1b ist M⁺ auch Basispeak. Der massenspektrometrisch beobachtete M⁺-Peak von 1a-9-BBN (m/z 290) dient zum Nachweis des Mischassoziats im Gemisch mit 1a und (9-BBN)₂. Eine charakteristische Bruchstückmasse von 1a-c ist m/z153, die dem Bruchstück C₈H₁₄BS zuzuordnen ist. Bei 1d tritt m/z 154 für C₈H₁₄BSH auf. Das Massenspektrum von 1e enthält keine S-haltigen Bruchstückmassen. Aus 1e wird offensichtlich der C₆H₅S-Rest (109) abgespalten. Außer der Bruchstückmasse m/z 121 tritt bei 1e der Basispeak m/z 108 für C₈H₁₂ (?) auf, was auf die Abspaltung von C₆H₅SBH₂ (122) aus 1e (230) hinweist.

In Tab. 2 sind die ¹H-, ¹¹B- und ¹³C-NMR-Spektren der 9-(Organothio)-9-BBN-Verbindungen zusammengestellt.

Die ¹H-NMR-Signale entsprechen der Erwartung. Aus den ¹¹B-Resonanzen im Bereich von 74 – 78 ppm ergibt sich, daß **1a** – **f** in Benzol-Lösung bei Raumtemperatur monomer sind. Beim Abkühlen auf -20 °C tritt in Toluol das ¹¹B-NMR-Signal bei 8.1 ppm (**1a**)₂ auf. Relativ stark abgschirmte Bor-Atome im Bereich von 2.1 – 2.3 ppm sind bei den beiden Mischdimeren **1a**-9-BBN und **1b**-9-BBN zu beobachten.

Die ¹³C-NMR-Spektren der in Toluol monomeren 1a und b bestehen bei Raumtemperatur aus jeweils zwei Signalsätzen für die α -C- und β -C-Atome des C₈H₁₄B-Bicyclus. Erwärmt man 1a in Toluol auf ca. 80 °C, so koaleszieren die α -C- und β -C-NMR-Signale zu jeweils einem Signal.

		¹ H-NMR-Daten (200 MHz)		¹¹ B-NMR-Daten (64.2 MHz)		¹³ C-NMR-Daten (75.5 MHz)				
Vert	Verbindung $\delta^{i}H$ (ppm) (in $C_{\delta}D_{\delta}$)		LM	δ ¹¹ B (ppm)	LM	δ ¹³ C (ppm)				
Nr.	Schmp.[°C]	H(C ₈ H ₁₄)	sonstige	(20 °C)	(b _{1/1} in Hz)	(20 °C)	∝ C [br]	βC	۲C	sonstige
(<u>1a</u>) ₂	[109-111]	1.81; 1.33	1.82	C ₆ D ₆	74.5 (380)	C ₆ D ₆	30.0; 26.0	33.9; 33.4	23.6	10.7(SCH ₃)
				C ₇ D ₈ (-20°C)	8.1	-				
				-		C ₇ D ₈ (+80°C)	28.5	34.0	23.7	10.7(SCH ₃)
la-AICI3	[54-57]	1.82; 1.66; 1.17	1.87	с ₆ D ₆	83.9 (350)	C D (50.3 MHz)	31.8	34.6	23.1	12.5(SCH ₃)
Py- <u>la</u>	[131-133]	1.91; 1.75; 1.44 1.29	1.46(SMe) 8.66; 8.06; 7.67	CD ₂ Cl ₂	5.6 (150)	CD ₂ Cl ₂	22.5	31.4 [br]	24.7	7.9(SCH ₃) 145.4(o) 125.8(m) 140.4(p)
TMP- <u>la</u>	[85-86]	2.1 - 1.9 1.7; 1.11	1.84 0.84 ² J _{PH} = 9.3Hz]	C ₆ D ₆	4.9(130)	C ₆ D ₆	22.6	32.7	24.9	$10.0(SCH_{3})$ 11.3[P(CH_{3})_{3}] [¹]_{PC} = 30Hz]
(<u>1b</u>) ₂	[64-66]	1.83; 1.34	2.47 1.06	C ₆ D ₆	76.5 (130)	C ₆ D ₆	30.0; 26.7	34.1; 33.7	23.6	22.9(SCH ₂) 17.8(CH ₃)
<u>1f</u>	[123-126]	1.86; 1.40	2.80	C ₆ D ₆	77.0	C ₆ D ₆	28.5; 26.2	33.4 [br]	23.8	31.1(SCH ₂)
<u>lc</u>	[ca22]	1.84; 1.38	3.25 1.20	C ₆ D ₆	76.3 (150)	C ₆ D ₆	29.9; 27.4	34.0 [br]	23.6	33.7(SCH) 26.2(CH ₃)
				-		CD ₂ Cl ₂ (-50°C)	29.9; 27.0	34.5; 33.8	23.8	34.2(SCH) 26.6(CH ₃)
<u>1d</u>	[ca9]	1.87; 1.36	1.38	C ₆ D ₆	76.0 (260)	C ₆ D ₆	29.3	33.6	23.3	44.5(SC) 33.4(CH ₃)
<u>le</u>	p.b.	1.74; 1.26	7.36 7.0	C ₆ D ₆	77.8 (200)	CDCI3	28.2	33.7	23.0	132.8(i) 133.2(o) 128.8(m) 127.3(p)
1a-9-BBN im Gemisch mit 1a und (9-BBN) ₂			BN) ₂	C ₆ D ₆	2.3 (165)	 n.b.				
1b-9-BBN im Gemisch mit 1b und (9-BBN) ₂			C ₆ D ₆	2.1 (200)			n.b.			

Tab. 2. NMR-Daten der 9-(Organothio)-9-borabicyclo[3.3.1]nonane (n. b. = nicht bestimmt)

Die durch die B-Kopplung breiten α-C-Resonanzen von 1c und f sind bei Raumtemperatur ebenfalls in zwei Sätze getrennt (vgl. Tab. 2). Das bei 20°C beobachtete breite β-C^{2,4,6,8}-NMR-Signal von 1c spaltet erst beim Abkühlen $(-50^{\circ}C)$ in zwei β -C-Signale auf. Für 1d und e tritt jeweils nur eine Spezies von α -C- und β -C-Atomen im C₈H₁₄B-Ringsystem auf. Da sämtliche γ -C^{3,7}-Resonanzen von **1a**-f nicht aufgespalten sind, muß bei Raumtemperatur die Rotation um die BS-Bindung durch die zur C3-B-C7-Ebene abgewinkelte S-Organo-Gruppe von 1a-c bzw. f behindert sein. Die Nichtaufspaltung der α-C- und β-C-NMR-Signale bei 1d und e führen wir auf einen im Vergleich zu den B-S-C9(10)-Winkeln in 1a (ca. 105°, vgl. Tab. 5) relativ stumpfen B-S1-C10- bzw. B'-S2-C9-Winkel zurück. Bei 1d dürfte diese Streckung vorwiegend sterisch, bei 1e hauptsächlich elektronisch bedingt sein.

 α -C^{1,5}-NMR-Signalaufspaltungen am C₈H₁₄B-Ringsystem sind bisher noch nicht beobachtet worden. Auch die Aufspaltung der β -C-Atome in zwei NMR-Signalgruppen für die C^{2,8}- und C^{4,6}-Atome (vgl. Abb. 1) des C₈H₁₄B-Bicyclus war bis jetzt unbekannt. Bei 1,5-Cyclooctandiylbor-Verbindungen mit 4fach koordiniertem Bor-Atom sind dagegen jeweils zwei NMR-Signalgruppierungen für die C^{2,4}- und C^{6,8}-Atome sowie für das γ -C³- und γ -C⁷-Atom schon beobachtet worden, falls bestimmte ungleiche Substituenten oberhalb und unterhalb der C¹BC⁵-Ebene an das Bor-Atom fest gebunden sind ^{11,12}.

Die ¹³C-NMR-Signale der α -C-, β -C- und/oder γ -C-Atome im C₈H₁₄B-Bicyclus können bei unterschiedlicher Umgebung der C-Atome somit in jeweils zwei Signalsätze für verschiedene C-Atome aufspalten. Dabei gilt für die C₈H₁₄B-SR-Verbindungen, daß α -C¹ \neq C⁵, β -C²⁸ \neq C^{4,6} und γ -C³ = C⁷ sind. Für die C₈H₁₄B(X)Y-Verbindungen sind dagegen α -C¹ = C⁵, β -C^{2,4} \neq C^{6,8} und γ -C³ \neq C⁷.

Röntgenstrukturanalyse von (1a)2^{13a)}

Die experimentellen Angaben zur Molekülstruktur eines aus Toluol gewonnenen Kristalls von $(1a)_2$ sind in Tab. 3 zusammengestellt.

Tab. 3. Daten zur Kristallstrukturanalyse von (1a)₂

Formel $C_{18}H_{34}H_{2}S_{2}$, Molmasse 336.20
Kristallgröße 0.31 x 0.24 x 0.21 mm, Farbe weiß; Reflexe zur Verfeinerung: 16
$a = 6.590(2), b = 20.866(5), c = 7.174(2) \dot{A}; \alpha = \gamma = 90^{\circ}, \beta = 112.47(2)^{\circ}$
$V = 911.7(4) Å^3$, $d_{ber} = 1.225 \text{ gcm}^3$, Raumgruppe $P2_1/m$ (No 11),
Z = 2; μ = 2.74 cm ⁻¹ , λ = 0.71069 Å, T = 20°C
Nicolet R3-Vierkreisdiffraktometer, Meßmethode ω -scan, 20-Bereich (°): $3 \leq 2\Theta \leq 45$;
unabhängige Reflexe 1235, davon beobachtet 1095 $[F_0 \ge 3.5\sigma(F)]$
keine Absorptions- und Extinktionskorrektur
verfeinerte Parameter: 136, R = 0.037, R _w = 0.0357; max. Restelektronendichte 0.32 $e\dot{A}^{-3}$
min. Restelektronendichte ~0.17 eÅ ⁻³
Strukturlösung und -verfeinerung nach G. M. Sheldrick ¹³⁰⁾ ;
sämtliche H-Atome auf berechneten Positionen, alle Nichtwasserstoffatome anisotrop

Tab. 4 enthält die Atomkoordinaten und die thermischen Parameter, Tab. 5 ausgewählte Bindungsabstände und Winkel von $(1a)_2$.

Tab. 4. Atomkoordinaten (× 10⁴) und isotrope thermische Parameter (pm² × 10⁻¹) von (1a)₂

Atom	x	у	z	U
S(1)	4525(1)	7500	8147(1)	31(1)
S(2)	2831(1)	7500	3732(1)	30(1)
В	3345(4)	6860(1)	5937(3)	29(1)
C(1)	1074(3)	6577(1)	5880(3)	34(1)
C(2)	7(3)	6185(1)	3923(4)	44(1)
C(3)	1482(4)	5668(1)	3562(4)	48(1)
C(4)	3835(4)	5893(1)	4025(4)	42(1)
C(5)	4917(3)	6280(1)	5982(3)	33(1)
C(6)	5344(3)	5889(1)	7920(3)	40(1)
C(7)	3305(4)	5668(1)	8254(4)	46(1)
C(8)	1518(4)	6184(1)	7814(4)	44(1)
C(9)	5371(5)	7500	3314(5)	41(1)
C(10)	7478(4)	7500	8895(5)	43(1)

Die Molekülstruktur und das Numerierungsschema von $(1a)_2$ sind aus Abb. 1 zu entnehmen.

Abb. 1. Röntgenographisch bestimmte Molekülstruktur von dimerem 9-(Methylthio)-9-borabicyclo[3.3.1]nonan (1a)₂

 $(1a)_2$ besitzt innerhalb der Fehlergrenzen C_{2v} -Symmetrie. Die Faltung des B₂S₂-Vierrings um die kristallographische Spiegelebene (y = 0.75), in der die Schwefel-Atome und die C-Atome der S-Methylgruppen liegen, beträgt 161.4°. Dabei sind die beiden cis-ständigen S-Methylgruppen mit einem S1...S2-C9-Winkel von 100.6° und einem S2...S1-C10-Winkel von 104.1° exocyclisch ausgestellt. Die Methylwasserstoffatome sind fehlgeordnet. Die beiden vierfach koordinierten Bor-Atome sind außerhalb des B₂S₂-Ringes mit je einem 1,5-Cyclooctandiyl-Rest verknüpft. Die beiden Sechsringe im C₈H₁₄B-Bicyclus liegen jeweils in Sessel-Konformation vor, wie dies auch bei den 1,5-Cyclooctandiyl-Resten des festen (9-BBN)2¹⁴⁾ und anderen 9-BBN-Verbindungen¹⁵⁾ gefunden wird. Aus der Abwinkelung der beiden cis-ständigen S-Methylgruppen von (1a)₂ (vgl. Abb. 1) folgt die unterschiedliche Umgebung der Atome C1 und C5 bzw. der Atome C2,8 und C4,6, die auch beim Monomer 1a in Lösung beobachtet wird (vgl. ¹³C-NMR-Signale in Tab. 2).

Experimenteller Teil

Sämtliche Reaktionen und Messungen wurden bei striktem Luftund Feuchtigkeitsausschluß unter Argon in ausgeheizten Glasgeräten durchgeführt. Die Bestimmungen der C-, H-, B- und S-Werte erfolgten bei Dornis und Kolbe, Mülheim an der Ruhr.

Geräte: DSC-Analysen: DuPont 1090 incl. Einwäge-Vorrichtung unter Luft- und Feuchtigkeitsausschluß. – Massenspektren¹⁶⁾ vgl. Tab. 1: EI-MS (70 eV) mit Finnigan MAT CH 5. – NMR-

Bindungsabstände (pm)				Winkel (°)				
B-S1	199.0(2)	B-\$2	199.8(2)	B-S1-B' S1-B-S2	84.3(1) 94.5(1)	B-S2-B' S1-B'-S2	83.9(1) 94.2(1)	
\$1-C10	181.0(3)	S2-C9	181.0(4)	B-S1-C10	106.5(1)	B-S2-C9	104.1(1)	
B-Cl	159.5(3)	B-C5	158.6(3)	S1-B-C1 S1-B-C5	110.2(2) 116.3(1)	S2-B-C1 S2-B-C5	110.7(1)	
C1-C2	154.3(3)	C5-C4	153.8(3)	CI-B-C5	108.5(2)	C1'-B'-C5'	108.8(2)	
C1-C8	154.0(3)	C5-C6	154.2(3)	S1 S2-C9 C2-C1-C8	100.6 113.6(2)	S2 S1-C10 C4-C5-C6	104.1 114.0(2)	
C4-C3	153.0(3)	C6-C7	152.4(4)	C1-C2-C3	115.3(2)	C5-C4-C3	115.9(2)	
C2-C3	153.7(4)	C8-C7	153.7(3)	C1-C8-C7 C2-C3-C4	115.1(2) 113.7(2)	C5-C6-C7 C8-C7-C6	115.7(2) 114.1(2)	
		Interplan	arwinkel E(S	1-B-S2)/E(S1-B	s'-S2) 161	.4		

Spektren¹⁷⁾ (vgl. Tab. 2) mit Bruker AC 200 (¹H-NMR), WP 300 (¹³C-NMR) und Varian FT XL 100-15 (¹¹B-NMR).

9-Cl-9-BBN¹⁸⁾ und (9-BBN)₂¹⁹⁾ wurden nach Literaturvorschrift hergestellt. Man bezog CH₃SH (Matheson), C₂H₃SH und HSCH₂CH₂SH (Schuchardt), (CH₃)₂CHSH, (CH₃)₃CSH und C₆H₅SH (Fluka). Benzol und Toluol waren vor Gebrauch luft- und wasserfrei gemacht worden.

Lithiumorganothiolate (allgemeine Arbeitsweise): 0.50 mol RSH [R = CH₃, C₂H₅, CH(CH₃)₂, C(CH₃)₃, C₆H₅] bzw. 0.25 mol HSCH₂CH₂SH tropft man bei Raumtemperatur in ca. 2 h zu 0.55 mol Butyllithium in ca. 340 ml Hexan. Unter starker Wärmeentwicklung fallen LiSR (R = CH₃, C₂H₅, CH(CH₃)₂, C₆H₅) bzw. Li-SCH₂CH₂SLi voluminös aus, LiSC(CH₃)₃ bleibt in Lösung. Nach 2 h Rühren bei 60-65°C wird abfiltriert, mehrmals mit Hexan gewaschen und bei 0.1 Torr getrocknet. Man erhält farblose, feinpulvrige Lithiumalkyl- bzw. -phenylsulfide sowie Dilithium-1,2ethandisulfid mit 77-97% Ausbeute.

CH3LiS (54.0)	Ber. C 22.22 H 5.56 Li 12.85 S 59.37
97% Ausb.	Gef. C 22.54 H 5.71 Li 13.10 S 58.65
C₂H₅LiS (68.1)	Ber. C 35.24 H 7.34 Li 10.13 S 47.14
87% Ausb.	Gef. C 34.68 H 8.30 Li 10.18 S 46.84
C ₃ H ₇ LiS (82.1)	Ber. C 43.89 H 8.59 Li 8.45 S 39.05
77% Ausb.	Gef. C 43.25 H 8.40 Li 8.34 S 39.96
C₄H₂LiS (96.1)	Ber. C 49.96 H 9.44 Li 7.22 S 33.36
83% Ausb.	Gef. C 49.66 H 9.59 Li 7.40 S 33.35
C₀H₅LiS (116.1)	Ber. C 62.10 H 4.34 Li 5.97 S 27.61
92% Ausb.	Gef. C 62.41 H 4.35 Li 6.11 S 26.95
C ₂ H ₄ Li ₂ S ₂ (106.1)	Ber. C 22.62 H 3.80 Li 13.08 S 60.51
92% Ausb.	Gef. C 22.20 H 4.13 Li 12.79 S 60.88

Dimeres 9-(Methylthio)-9-borabicyclo[3.3.1]nonan (1a)₂: 6.60 g (42.1 mmol) 9-Cl-9-BBN in 50 ml Toluol tropft man bei $20-30^{\circ}$ C in ca. 30 min zu 2.26 g (41.6 mmol) LiSCH₃ in 100 ml Toluol. Nach 3 h Rühren bei $85-90^{\circ}$ C wird von 1.57 g (89%) LiCl abgetrennt (Extraktionsfritte). Die Lösung engt man zu ca. zwei Drittel ein und läßt in der Wärme auskristallisieren. Nach Filtrieren und Waschen mit Pentan erhält man 6.77 g (97%) farbloses (1a)₂ mit Schmp. 109-111°C; DSC: 107°C. – Spektren vgl. Tab. 1, 2; Röntgenstrukturanalyse vgl. Abb. 1.

 $\begin{array}{c} C_{18}H_{34}B_2S_2 \ (336.2) \\ Gef. \ C \ 64.31 \ H \ 10.20 \ B \ 6.42 \ S \ 19.10 \\ Gef. \ C \ 64.19 \ H \ 10.31 \ B \ 6.60 \ S \ 18.88 \end{array}$

Additionsverbindungen aus (1a)₂

(S-Al) (9-Methylthio)-9-borabicyclo[3.3.1]nonan-Trichloraluminium (1a-AlCl₃): 1.63 g (12.3 mmol) AlCl₃ gibt man rasch zur Suspension aus 2.06 g (6.3 mmol) (1a)₂ in 25 ml Toluol. Nach wenigen min Rühren bei Raumtemp. entsteht eine klare Lösung, die nach 2 h Rühren i. Vak. (12 Torr) eingeengt und langsam auf -80° C abgekühlt wird. Nach Abhebern der überstehenden Lösung, Waschen der Kristalle mit kaltem Toluol und Trocknen i. Vak. erhält man 2.82 g (76%) weißes 1a-AlCl₃ mit Schmp. 54-57°C (DSC: 52°C).

 $C_9H_{17}AlBCl_3S$ (301.4) Ber. C 35.83 H 5.69 Al 8.95 B 3.59 Cl 35.29 S 10.64 Gef. C 35.73 H 6.18 Al 8.76 B 3.61 Cl 34.92 S 10.65

Pyridin-(9-Methylthio)-9-borabicyclo[3.3.1]nonan (Py-1a): 1.0 g (12.6 mmol) Pyridin gibt man rasch zu 1.98 g (5.9 mmol) (1a)₂ in 25 ml Toluol. Unter leichter Temperatursteigerung bildet sich eine gelbe Lösung. Nach 2 h Rühren bei Raumtemp. fallen beim langsamen Abkühlen (-78 °C) Kristalle aus, von denen die Mutterlauge abgehebert wird. Nach wiederholtem Waschen mit kaltem Toluol und Trocknen i. Vak.. erhält man 2.03 g (69%) blaßgelbes Py-la mit Schmp. 131–133°C. Weitere 0.55 g (19%) Py-la (DSC: 133°C) lassen sich aus der Mutterlauge gewinnen. – MS: kein M⁺; m/z 168 [(1a)₂] und 79 (Py).

$\begin{array}{rl} C_{14}H_{22}BNS~(247.2) & \text{Ber. C} 68.02 & H~8.97 & B~4.37 & N~5.67 & S~12.97 \\ & \text{Gef. C} 67.32 & H~9.11 & B~4.29 & N~5.88 & S~13.34 \end{array}$

Trimethylphosphan-(9-Methylthio)-9-borabicyclo[3.3.1]nonan (TMP-1a): 1.03 g (13.6 mmol) TMP gibt man zu 2.25 g (6.7 mmol) (1a)₂ in 25 ml Toluol. Unter leichter Temperatursteigerung bildet sich eine klare Lösung, die nach ca. 3 h Rühren bei Raumtemp. langsam auf -80° C abgekühlt wird. Man isoliert 2.54 g (78%) weißes, kristallines TMP-1a mit Schmp. 85-86°C (DSC: 80°C). – MS: kein M⁺, nur m/z 168 (1a) und 76 (TMP).

C₁₂H₂₆BPS (244.1) Ber. C 59.03 H 10.73 B 4.42 P 12.70 S 13.15 Gef. C 58.94 H 10.68 B 4.52 P 12.65 S 13.15

Dimeres 9-(Ethylthio)-9-borabicyclo[3.3.1]nonan (1b)₂: Man erhitzt die vereinigten Lösungen von 6.22 g (39.7 mmol) 9-Chlor-9-BBN in 50 ml Toluol und 2.69 g (39.5 mmol) LiSC₂H₅ in 100 ml Toluol 4.5 h unter Rühren auf 90-100 °C, entfernt das Toluol bei 14 Torr (Bad: < 50%) und erhält beim Sublimieren (40-60 °C/ 0.001 Torr) 6.24 g (87%) farbloses (1b)₂ mit Schmp. 64-66 °C; DSC: 62-63 °C. – Spektren vgl. Tab. 1, 2.

9-(Isopropylthio)-9-borabicyclo[3.3.1]nonan (1c): Das Gemisch von 3.90 g (51 mmol) HSCH(CH₃)₂ und 5.94 g (24 mmol) (9-BBN)₂ in 80 ml Toluol entwickelt bei ca. 60°C in 28 h 974 ml (89%) H₂. Nach Entfernen des Lösungsmittels bei 14 Torr (Bad: < 50°C) destillieren 7.38 g (77%) farbloses, 94 proz. (GC) 1c mit Sdp. 66-70°C/0.001 Torr. – Spektren vgl. Tab. 1, 2. – DSC-Messung: Nach Abkühlen einer Probe (keine Einwaage) auf ca. –140°C erfolgt beim Erwärmen ab –67.7°C spontan Wärmeabgabe (0.317 J) und ab –21.8°C wieder Wärmeaufnahme (0.348 J).

9-(tert-Butylthio)-9-borabicyclo[3.3.1]nonan (1d): Zu 5.76 g (60 mmol) LiSC(CH₃)₃ in 100 ml Toluol tropft man in 30 min 9.40 g (60 mmol) 9-Chlor-9-BBN in 50 ml Toluol. Die Temperatur steigt auf 37 °C an. Nach 3 h Rühren bei ca. 90 °C filtriert man von 2.56 g (100%) LiCl, engt bei 14 Torr ein (Bad: < 50 °C) und destilliert 10.36 g (83%) farbloses 1d mit Sdp. 78-80 °C/0.001 Torr ab. – Spektren vgl. Tab. 1, 2.

9-(Phenylthio)-9-borabicyclo[3.3.1]nonan (1e): 25.58 g (164 mmol) 9-Cl-9-BBN in 100 ml Benzol tropft man langsam unter Rühren zu 19.02 g (164 mmol) LiSC_6H_5 in 300 ml Benzol. Nach 4.5 h Rückflußkochen filtriert man von 7.42 g verunreinigtem LiCl (ber. 6.95 g) ab, engt bei 14 Torr ein und erhält 34.6 g (92%) farbloses, leicht viskoses, reines 1e mit Sdp. 110°C/0.001 Torr. – Spektren vgl. Tab. 1, 2.

1,2-Bis (1,5-cyclooctandiylborylthio) ethan (1f): Man vereinigt 4.23 g (45 mmol) HSCH₂CH₂SH und 10.96 (45 mmol) (9-BBN)₂ in 120 ml Toluol und erwärmt die Suspension 40 min auf 30-50 °C. 1.94 l (96%) H₂ werden frei. Beim Abkühlen der auf ca. 90 °C erwärmten, farblosen Lösung kristallisiert 1f aus. Nach Abhebern der überstehenden Lösung, Waschen der Kristalle und Trocknen i. Vak. erhält man 13.85 g (92%) reines 1f mit Schmp. 123-126°C. -Spektren vgl. Tab. 1, 2.

C₁₈H₃₂B₂S₂ (334.2) Ber. C 64.69 H 9.65 B 6.47 S 19.21 Gef. C 64.49 H 9.93 B 6.41 S 19.11

1,1:2,2-Bis(1,5-cyclooctandiyl)-µ-(methylthio)-diboran(6) (1a-9-BBN): 1.40 g (4.16 mmol) (1a)₂ und 1.02 g (4.2 mmol) (9-BBN)₂ erhitzt man in 30 ml Toluol 3 h auf 60°C. Beim langsamen Abkühlen der farblosen Lösung auf -78°C erhält man farblose Kristalle mit Schmp. 97-99°C als Gemisch von ca. 15% (1a)₂, ca. 15% $(9-BBN)_2$ und ca. 70% **1a**-9-BBN (¹¹B-NMR). - EI-MS: m/z 290 (M^+, B_2) , 244 [(9-BBN)₂], 168 (1a). – Nach 6 h in Toluol bei 80-90°C ist die Zusammensetzung der neugewonnenen Kristalle unverändert (¹¹B-NMR).

1,1:2,2-Bis(1,5-cyclooctandiyl)-µ-(ethylthio)-diboran(6) (1b-9-BBN): Das Gemisch aus 1.32 g (3.62 mmol) (1b)₂ und 0.88 g (3.6 mmol) (9-BBN)₂ in 20 ml Toluol erhitzt man 6 h auf ca. 80°C. Nach Entfernen des Lösungsmittels bei 0.001 Torr besteht der feste Rückstand aus einem Gemisch (¹¹B-NMR) von (1b)₂ (ca. 30%), (9-BBN)₂ (ca. 30%) und ca. 40% 1b-9-BBN.

9-(Alkylthio)-9-borabicyclo[3.3.1]nonane 1c, 1d oder 1e mit (9- $(BBN)_2$: Aus äquimolaren Mengen von 1c, 1d oder 1e und $(9-BBN)_2$ in Toluol erhält man in 4-5 h bei ca. 80°C nach Einengen wieder Gemische von 1c, 1d oder 1e und (9-BBN)₂ (¹¹B-NMR).

CAS-Registry-Nummern

(1a)₂: 113034-94-9 / 1a-9-BBN: 113034-96-1 / (1b)₂: 113034-95-0 / (1a)₂: 113034-97-2 / 1c: 113057-83-7 / 1d: 113034-92-7 / 1e: 113034-93-8 / 1f: 113055-84-8 / (9-BBN)₂: 21205-91-4 / 9-Chlor-9-BBN: 22086-34-6 / LiSCH₃: 35638-70-1 / LiSC₂H₅: 30383-01-8 / $\frac{15}{12}$ LiSCH(CH₃)₂: 16203-41-1 / LiSC(CH₃)₃: 16203-42-2 / LiSC₃H₆: 2973-86-6 / LiSCH₂CH₂SLi: 100742-06-1 / HSCH₃: 74-93-1 / HSC₂-H₃: 75-08-1 / HSCH(CH₃)₂: 75-33-2 / HSC(CH₃)₃: 75-66-1 / LiSC₅H₆: HSC₅H₆: 108-98-5 / HSCH₂CH₂SH: 540-63-6

- ¹⁾ 82. Mitteilung über Borverbindungen; 81. Mitteilung: R. Köster, G. Seidel, Z. Naturforsch. Teil B, 43 (1988), im Druck.
- ²⁾ R. Köster, G. Seidel, Liebigs Ann. Chem. 1977, 1837.
- ³⁾ R. Köster, Y. H. Tsay, C. Krüger, J. Serwatowski, Chem. Ber. 119 (1986) 1174. ^{4) 4a)} M. Yalpani, R. Boese, R. Köster, *Chem. Ber.* **120** (1987) 607. –
- ^{4b)} R. Köster, M. Yalpani, Angew. Chem. 97 (1985) 600; Angew. Chem. Int. Ed. Engl. 24 (1985) 572.
- ⁵⁾ H. Nöth, W. Biffar, unveröffentlicht; vgl. Biffar, Dissertation, Univ. München, 1981.
- ⁶⁾ W. Siebert, Organobor-Schwefel- und -Selen-Verbindungen, in Methoden der Örganischen Chemie, 4. Aufl. (Houben-Weyl-Müller), Bd. XIII/3a, Ed. R. Köster, S. 859ff., Thieme, Stuttgart 1982. ⁷⁾ Vgl. Lit.⁶⁾, S. 856.
- ⁸⁾ Vgl. Lit.⁶⁾, S. 858
- ⁹⁾ P. Idelmann, G. Müller, W. R. Scheidt, W. Schüßler, K. Seevogel, R. Köster, Angew. Chem. 96 (1984) 145; Angew. Chem. Int. Ed. Engl. **23** (1984) 153.
- ¹⁰⁾ H. Nöth, R. Staudigl, Z. Anorg. Allg. Chem. 481 (1981) 41.
- ¹¹⁾ B. Wrackmeyer, P. Galow (Universität München 1982); vgl. B. Wrackmeyer, R Köster, Analytik der Organobor-Verbindungen, in Methoden der Organischen Chemie 4. Aufl. (Houben-Weyl-Müller, Bd. XIII/3c, Ed. R. Köster, S. 524, Thieme, Stuttgart 1984.
- ¹²⁾ Vgl. Lit.¹⁾, dort Tab. 2. ¹³⁾ Vgl. Lit.¹⁾, dort Tab. 2. ¹³⁾ Weitere Einzelheiten zur Kristallstrukturanalyse von (**1a**)₂ können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 52823, der Autoren und des Zeitschriftenzitats angefordert werden $-^{13b}$ G. M. Sheldrick, schriftenzitats angefordert werden -SHELXTL, ein komplettes Programmsystem zum Lösen, Verfeinern und Darstellen von Kristallstrukturen aus Beugungsdaten, Univ. Göttingen, 1981.
- ¹⁴ D. J. Brauer, C. Krüger, Acta Crystallogr., Sect. B, 29 (1973)
- 1684. ¹⁵⁾ ^{15a)} R. Boese, R. Köster, M. Yalpani, *Chem. Ber.* **118** (1985) 670. ^{15b)} G. Müller, C. Krüger, *Acta Cyrstallogr., Sect. C,* **42** (1986) 1856; vgl. auch Lit.⁹⁾. ^{15e)} M. Yalpani, R, Boese, R. Köster, Chem. Ber. 121 (1988) 287.
- ¹⁶⁾ MS-Daten: D. Henneberg, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ¹⁷⁾ NMR-Kartei, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr.
- ¹⁸⁾ R. Köster, M. A. Graßberger, Liebigs Ann. Chem. 719 (1968) 169. ¹⁹ R. Köster, P. Binger, Inorg. Synth. 15 (1974) 174; Schmp. von (9-BBN)₂: 156 °C (DSC).

[348/87]